In Review

+Co-first author, *Corresponding author

[25] Ranjithkumar, A.*, Duncan, E., Yang, X., Partridge, D., Lachlan-Cope, T., Gong, X., Nishimura, K., and Frey, M., 2024, Direct observation of Arctic Sea salt aerosol production from blowing snow and modelling over a changing sea ice environment. Elementa: Science of the Anthropocene, in review

[24] Zhou, S., Chen, Y.*, Huang, S., Gong, X., Yang, G., Zhang, H., Herrmann, H., Wiedensohler, A., Poulain, L., Zhang, Y., Wang, F., Xu, Z., and Yan, K.,2023. A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution. Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-249, in review

[23] Li, D., Wang, D., Caudillo, L., Scholz, W., Wang, M., Tomaz, S., Marie, G., Surdu, M., Eccli, E., Gong, X., Gonzalez-Carracedo, L., Granzin, M., Pfeifer, J., Rörup, B., Schulze, B., Rantala, P., Perrier, S., Hansel, A., Curtius, J., Kirkby, J., Donahue, N. M., George, C., El-Haddad, I., and Riva, M.*,2023. Ammonium CI-Orbitrap: a tool for characterizing the reactivity of oxygenated organic molecules. Atmos. Meas. Tech. in review.

2024

[22] Chen, J., Wu, Z. *, Gong, X. , Qiu, Y., Chen, S., Zeng, L., Hu, M., 2024. Anthropogenic dust as a significant source of ice-nucleating particles in the urban environment. Earth’s Future, https://doi.org/10.1029/2023EF003738

​Before joining Westlake University

[21] Li, D. +, Huang, W. +, Wang, D., Wang, M., Thornton, J., Caudillo, L., Rörup, B., Marten, R., Scholz, W., Finkenzeller, H., Marie, G., Bell, D., Brasseur, Z., Curtius, J., Dada, L., Duplissy, J., Gong, X. , Hansel, A., He, X., Hofbauer, V., Junninen, H., Krechmer, J.E., Kurten, A., Lamkaddam, H., Lehtipalo, K., Lopez, B., Ma, Y., Mahfouz, N., Manninen, H.E., Mentler, B., Perrier, S., Petäjä, T., Pfeifer, J., Philippov, M., Schervish, M., Schobesberger, S., Shen, J., Surdu, M., Tomaz, S., Volkamer, R., Wang, X., Weber, S., Welti, A., Worsnop, D., Wu, Y., Yan, C., Zauner-Wieczorek, M., Kulmala, M., Kirkby, J., Donahue, N., George, C., El-Haddad, I. *, Bianchi, F. *, Riva, M. *, 2024. Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation. Environ. Sci. Technol. 58, 3, 1601–1614, https://pubs.acs.org/doi/10.1021/acs.est.3c07958

[20] Wang, Y. *, Bagya Ramesh, C., Giangrande, S., Fast, J., Gong, X. , Zhang, J., Matthews, A., Mei, F., Tolga Odabasi, A., Shilling, J., Tomlinson, J., Wang, D., Wang, J., 2023. Examining the vertical heterogeneity of aerosols over the Southern Great Plains. Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023

[19] Gong, X. , Wang, Y., Xie, H., Zhang, J., Lu, Z., Stratmann, F., Wex, H., Liu, X., Wang, J. *, 2023. Maximum supersaturation in the marine boundary layer clouds over the North Atlantic. AGU Advances. 4(6), e2022AV000855. https://doi.org/10.1029/2022AV000855
News&Views: Editor’s Highlights by Bjorn Stevens, Measuring Link Between the Chemistry and Physics of the Atmosphere.

[18] Gong, X. , Zhang, J., Croft, B., Yang, X., Frey, M.M., Bergner, N., Chang, R.Y.-W., Creamean, J.M., Kuang, C., Martin, R.V., Ranjithkumar, A., Sedlacek, A.J., Uin, J., Willmes, S., Zawadowicz, M.A., Pierce, J.R., Shupe, M.D., Schmale, J., Wang, J. *, 2023. Arctic warming by abundant fine sea salt aerosols from blowing snow. Nat. Geosci.( Selected as cover article ) 16, 768–774, https://doi.org/10.1038/s41561-023-01254-8
News&Views: Jaeglé, L. Blowing hot and cold. Nat. Geosci. 16, 756–757 (2023). https://doi.org/10.1038/s41561-023-01261-9
Science Daily: Washington University in St. Louis. Blowing snow contributes to Arctic warming. ScienceDaily, 4 September 2023. www.sciencedaily.com/releases/2023/09/230904133143.html
Phys.org: Washington University in St. Louis. Research shows blowing snow contributes to Arctic warming. 4 September 2023. https: //phys.org/news/2023-09-contributes-arctic.html

[17] Gong, X. *, Radenz, M., Wex, H., Seifert, P., Ataei, F., Henning, S., Baars, H., Barja, B., Ansmann, A., Stratmann, F., 2022a. Significant continental source of ice-nucleating particles at the tip of Chile’s southernmost Patagonia region. Atmos. Chem. Phys. 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022

[16] Gong, X. *, Wex, H., Müller, T., Henning, S., Voigtländer, J., Wiedensohler, A., Stratmann, F., 2022b. Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification. Atmos. Chem. Phys. 22, 5175–5194, https://doi.org/10.5194/acp-22-5175-2022

[15] Beck, I., Angot, H., Baccarini, A., Dada, L., Quéléver, L., Jokinen, T., Laurila, T., Lampimäki, M., Bukowiecki, N., Boyer, M., Gong, X. ., Gysel-Beer, M., Petäjä, T., Wang, J., Schmale, J. *, 2022. Automated identification of local contamination in remote atmospheric composition time series. Atmos. Meas. Tech. 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022

[14] Van Pinxteren, M., Robinson, T.-B., Zeppenfeld, S., Gong, X. , Bahlmann, E., Fomba, K.W., Triesch, N., Stratmann, F., Wurl, O., Engel, A., Wex, H., Herrmann, H. *, 2022. High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean. Atmos. Chem. Phys. 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022

[13] Hartmann, M. *, Gong, X. , Kecorius, S., Van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., Stratmann, F., 2021. Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N. Atmos. Chem. Phys. 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021

[12] Triesch, N., Van Pinxteren, M., Frka, S., Stolle, C., Spranger, T., Hoffmann, E.H., Gong, X. , Wex, H., Schulz-Bull, D., Gašparović, B., Herrmann, H. *, 2021. Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective transfer and high enrichments. Atmos. Chem. Phys. 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021

[11] Zhang, J., Spielman, S., Wang, Y., Zheng, G., Gong, X. , Hering, S., Wang, J. *, 2021. Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS). Atmos. Meas. Tech. 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021

[10] Chen, J., Wu, Z.*, Wu, G., Gong, X. , Wang, F., Chen, J., Shi, G., Hu, M., Cong, Z., 2021. Ice‐Nucleating Particle Concentrations and Sources in Rainwater Over the Third Pole, Tibetan Plateau. JGR Atmospheres, 126, e2020JD033864, https://doi.org/10.1029/2020JD033864

[9] Welti, A. *, Bigg, E.K., DeMott, P.J., Gong, X. , Hartmann, M., Harvey, M., Henning, S., Herenz, P., Hill, T.C.J., Hornblow, B., Leck, C., Löffler, M., McCluskey, C.S., Rauker, A.M., Schmale, J., Tatzelt, C., Van Pinxteren, M., Stratmann, F., 2020. Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans. Atmos. Chem. Phys. 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020

[8] Gong, X. *, Wex, H., Van Pinxteren, M., Triesch, N., Fomba, K.W., Lubitz, J., Stolle, C., Robinson, T.-B., Müller, T., Herrmann, H., Stratmann, F., 2020a. Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater. Atmos. Chem. Phys. 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020

[7] Gong, X. *, Wex, H., Voigtländer, J., Fomba, K.W., Weinhold, K., Van Pinxteren, M., Henning, S., Müller, T., Herrmann, H., Stratmann, F., 2020b. Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 1: Particle number size distribution, cloud condensation nuclei and their origins. Atmos. Chem. Phys. 20, 1431–1449, https://doi.org/10.5194/acp-20-1431-2020

[6] Van Pinxteren, M. *, Fomba, K.W., Triesch, N., Stolle, C., Wurl, O., Bahlmann, E., Gong, X. , Voigtländer, J., Wex, H., Robinson, T.-B., Barthel, S., Zeppenfeld, S., Hoffmann, E.H., Roveretto, M., Li, C., Grosselin, B., Daële, V., Senf, F., Van Pinxteren, D., Manzi, M., Zabalegui, N., Frka, S., Gašparović, B., Pereira, R., Li, T., Wen, L., Li, J., Zhu, C., Chen, H., Chen, J., Fiedler, B., Von Tümpling, W., Read, K.A., Punjabi, S., Lewis, A.C., Hopkins, J.R., Carpenter, L.J., Peeken, I., Rixen, T., Schulz-Bull, D., Monge, M.E., Mellouki, A., George, C., Stratmann, F., Herrmann, H., 2020. Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign. Atmos. Chem. Phys. 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020

[5] Brilke, S. *, Fölker, N., Müller, T., Kandler, K., Gong, X. , Peischl, J., Weinzierl, B., Winkler, P.M., 2020. New particle formation and sub-10 nm size distribution measurements during the A-LIFE field experiment in Paphos, Cyprus. Atmos. Chem. Phys. 20, 5645–5656, https://doi.org/10.5194/acp-20-5645-2020

[4] Kecorius, S.*, Vogl, T., Paasonen, P., Lampilahti, J., Rothenberg, D., Wex, H., Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Henning, S., Gong, X., Welti, A., Kulmala, M., Stratmann, F., Herrmann, H., and Wiedensohler, A., 2019. New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea. Atmos. Chem. Phys. 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019

[3] Gong, X. *, Wex, H., Müller, T., Wiedensohler, A., Höhler, K., Kandler, K., Ma, N., Dietel, B., Schiebel, T., Möhler, O., Stratmann, F., 2019. Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles. Atmos. Chem. Phys. 19, 10883–10900, https://doi.org/10.5194/acp-19-10883-2019

[2] Wendisch, M. *, Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C.B., Bozem, H., Brückner, M., Clemen, H.-C., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X. , Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., Jäkel, E., Järvinen, E., Jourdan, O., Kästner, U., Kecorius, S., Knudsen, E.M., Köllner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., Van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Schäfer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenböck, A., Seifert, P., Shupe, M.D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., Vogl, T., Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., Zeppenfeld, S., 2019. The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bulletin of the American Meteorological Society 100, 841–871, https://doi.org/10.1175/BAMS-D-18-0072.1

[1] Gong, X. , Zhang, C., Chen, H., Nizkorodov, S.A., Chen, J., Yang, X. *, 2016. Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai. Atmos. Chem. Phys. 16, 5399–5411, https://doi.org/10.5194/acp-16-5399-2016